

Prefeitura Municipal de Muriaé - MG

Projetos para Sistemas de Esgotos Sanitários de Muriaé

Contrato 039/2018

AMPLIAÇÃO E REFORMA ETE SAFIRA PROJETO BÁSICO

Volume I – Memorial Descritivo e de Cálculos

SETEMBRO / 2019

Projetos para Sistemas de Esgotos Sanitários de Muriaé – MG

Contrato 039/2018

Prefeitura Municipal de Muriaé

Av. Maestro Sansão, nº236, Bairro Centro Muriaé – MG CEP 36.880-002 Telefone: (32) 3696-3362

AMPLIAÇÃO E REFORMA ETE SAFIRA PROJETO BÁSICO Volume I – Memorial Descritivo e de Cálculos 1º Versão

MURIAÉ SETEMBRO / 2019

OTTAWA Engenharia Ltda. Rua Nilton Baldo, 744-A, Bairro Paquetá, Belo Horizonte – MG

Projetos para Sistemas de Esgotos Sanitários de Muriaé – MG Ampliação e Reforma ETE Safira - Projeto Básico Volume I – Memorial Descritivo e de Cálculos Ano: 2018 nº de f. 32

Prefeitura de Muriaé – Av. Maestro Sansão, nº236, Bairro Centro Muriaé – MG.

SUMÁRIO

A	PRES	ENTAÇ	ÀO	5		
1	INFO	DRMAÇ	ÕES CADASTRAIS	6		
	1.1 Identificação do Proponente					
	1.2		nsabilidade Técnica pelo Projeto de Engenharia			
	1.3		e Técnica			
2	RES	UMO D	A CONCEPÇÃO TÉCNICA	8		
3	PAR	ÂMETR	ROS DE PROJETO	9		
4	EST	AÇÃO L	DE TRATAMENTO DE ESGOTOS	10		
	4.1	Interlig	ações das Elevatórias Existentes à Nova Elevatória Final	10		
		4.1.1	Situação atual e futura			
		4.1.2	Quesitos a serem verificados e atendidos	10		
		4.1.3	Diâmetros e materiais	10		
		4.1.4	Tensão trativa	11		
		4.1.5	Declividade	11		
		4.1.6	Velocidade de escoamento	12		
		4.1.7	Lâmina d'água	12		
		4.1.8	Sistematização dos cálculos e resultados	12		
	4.2	Elevate	ória Final	13		
		4.2.1	Justificativa Técnica	13		
		4.2.2	Informações para o dimensionamento			
		4.2.3	Escolha dos Diâmetros			
		4.2.4	Cálculo da altura manométrica	14		
		4.2.5	Ponto de operação	15		
		4.2.6	Especificação dos conjuntos moto-bombas	15		
		4.2.7	Curva característica do conjunto moto bomba	16		
		4.2.8	Poço de sucção	17		
		4.2.9	Linha de recalque			
		4.2.10	Transientes hidráulicos	18		
			Empuxos e blocos de ancoragem			
	4.3	Adapta	ação do Decanto Digestor em Reator UASB	19		
		4.3.1	Dados para o dimensionamento	20		
		4.3.2	Geometria de cada unidade	20		
		4.3.3	Verificação do tempo de detenção hidráulica (TDH)	21		
		4.3.4	Verificação das cargas aplicadas	21		
		4.3.5	Verificação das velocidades superficiais			
		4.3.6	Dimensionamento do compartimento de decantação	22		
		4.3.7	Dimensionamento das passagens para o decantador			
		4.3.8	Escolha do diâmetro dos tubos de entrada			
		4.3.9	, o			
		4.3.10	Estimativa das concentrações de DQO e DBO no efluente do UAS			
			Avaliação da produção total de lodo			
			Avaliação da produção total de metano			
		4.3.13	Avaliação da produção total de biogás	25		
		4.3.14	Verificação da taxa de liberação de biogás	25		

		4.3.15	Disposição final do biogás	26
	4.4		Anaeróbio de Fluxo Ascendente Existente	
		4.4.1	Dados para verificação	26
		4.4.2	Verificação dos principais parâmetros operacionais	27
			Eficiências do tratamento	
		4.4.4	Estimativa de concentração de DBO no efluente final	28
	4.5		de Secagem	
			Verificação da área necessária	
			Caracterização das células de secagem	
			Verificação da lâmina aplicada (e)	
			Volume teórico de lodo desidratado (VLD)	
			Vazão de drenados	
5	PLA	NO DE	PARTIDA E OPERAÇÃO DA ETE	30
6	RFF	FRÊNC	CIAS BIBI IOGRÁFICAS	3.

APRESENTAÇÃO

O presente trabalho constitui-se no projeto básico das melhorias e ampliações da Estação de Tratamento de Esgotos Safira elaborado por OTTAWA ENGENHARIA LTDA, contratada pelo Município de Muriaé através do PROCESSO LICITATÓRIO PREGÃO 076/2018 - CONTRATO Nº 039/2018.

1 INFORMAÇÕES CADASTRAIS

1.1 Identificação do Proponente

Razão Social: Prefeitura Municipal de Muriaé

■ CNPJ: 17.947.581/0001-76

Prefeito: Ioannis Konstantinos Grammatikopoulos

Endereço: Av. Maestro Sansão, nº 236, Centro

Município/UF: Muriaé - MG

■ CEP: 36.880-002

■ Telefax: (32) 3696-3362

Endereço eletrônico: cmagno.smderi@gmail.com

1.2 Responsabilidade Técnica pelo Projeto de Engenharia

Nome: Ottawa Engenharia Ltda.

Endereço: Rua Nilton Baldo, 744-A

Bairro Jardim Paquetá

Belo Horizonte – MG / CEP: 31.330-660

Endereço eletrônico: ottawaeng@terra.com.br

1.3 Equipe Técnica

Coordenador Geral do Projeto, Engenheiro Civil:

Carlos Mauro Novais Gonçalves

CREA-MG: 49.318/ D

Especialista, Engenheiro Civil:

Hudson Costa Rocha CREA-MG: 99.507/D

Engenheiro Civil de Estruturas:

Olavo lanhez Neto CREA-MG: 154.912/D

Engenheiro Orçamentista:

Gildácio Pereira Chagas CREA-MG: 184.893/D

Engenheiro Eletricista:

Coracy Martins CREA-MG: 36.457/D

Consultor Ambiental:

Guilherme de Faria Barreto Biólogo CRBio: 30.774-4

2 RESUMO DA CONCEPÇÃO TÉCNICA

Conforme descrito no Estudo de Concepção foi definido, para a ETE Safira a adaptação dos Decantos Digestores existentes em um Reatores UASB, o que aumenta a eficiência do tratamento e dessa forma, não será necessária ampliação dos filtros existentes, que por sua vez receberão nova impermeabilização interna de forma a evitar o ataque nocivo dos gases gerados no processo de tratamento.

De forma a otimizar e reduzir custos de operação do sistema será implantada uma nova elevatória final, com conjuntos moto-bombas mais eficientes e mais resistentes à abrasão, em substituição às duas elevatórias existentes.

Além disso, será implantado um novo queimador de gases mais afastado dos reatores.

Rua Nilton Baldo, 744-A – Bairro Paquetá CEP 31.330-660 – Belo Horizonte / Minas Gerais. Endereço Eletrônico: ottawaeng@terra.com.br – Telefax (31) 2527-2800 – CNPJ: 04.472.311/0001-04

3 PARÂMETROS DE PROJETO

O dimensionamento das unidades propostas foi realizado a partir dos parâmetros básicos de projeto estabelecidos no Estudo de Concepção que precedeu à elaboração de todos os projetos básicos contidos no objeto da contração citada na apresentação desse relatório.

Apresenta-se a seguir a tabela com os resumos das vazões dos pontos de interesse do projeto.

Tabela 1. Vazões ETE Safira

	População	População Vazões de Projeto					
Bairros Atendidos	Final de Plano (hab)	Infiltração Final de Plano (L/s)	Mínima Final de Plano (L/s)	Média Final de Plano (L/s)	Máx.dia Final de Plano (L/s)	Máx.h Final de Plano (L/s)	
Safira	7923	1,58	6,55	13,10	15,72	22,31	
João XXIII	4413	0,88	3,65	7,30	8,76	12,43	
Augusto Abreu	95	0,02	0,08	0,16	0,19	0,27	
Santa Helena	46	0,01	0,04	0,08	0,10	0,13	
Planalto	2336	0,47	1,94	3,87	4,64	6,58	
Parte da Cerâmica	1624	0,32	1,34	2,68	3,22	4,57	
Colety	2152	0,43	1,78	3,56	4,27	6,06	
São Gotardo	2018	0,40	1,67	3,33	4,00	5,68	
Parte do Quinta das Flores	391	0,08	0,33	0,65	0,78	1,10	
Prefeito Hélio Araújo	2976	0,60	2,47	4,93	5,92	8,39	
Alterosa	372	0,07	0,31	0,61	0,73	1,04	
João VI	455	0,09	0,38	0,75	0,90	1,28	
Distrito Industrial	95	0,02	0,08	0,16	0,19	0,27	
Total	24.893	4,98	20,59	41,17	49,40	70,12	

Rua Nilton Baldo, 744-A – Bairro Paquetá CEP 31.330-660 – Belo Horizonte / Minas Gerais. Endereço Eletrônico: ottawaeng@terra.com.br – Telefax (31) 2527-2800 – CNPJ: 04.472.311/0001-04

4 ESTAÇÃO DE TRATAMENTO DE ESGOTOS

4.1 Interligações das Elevatórias Existentes à Nova Elevatória Final

4.1.1 Situação atual e futura

A ETE Safira conta atualmente com duas elevatórias que serão desativadas, a Elevatória 1 localizada próxima ao Tratamento Preliminar e a Elevatória 2 situada na outra margem do córrego que atravessa a área da ETE. O dimensionamento das redes que interligarão as duas elevatórias existentes à nova elevatória final foi realizado de maneira similar ao dimensionamento de interceptores de esgotos, cuja formulação matemática e os parâmetros técnicos empregados no projeto estão descritos nos subitens a seguir apresentados.

A Elevatória 1 recebe as contribuições dos bairros Safira, João XXIII, Augusto Abreu, Santa Helena, Planalto e parte da Cerâmica, cujas vazões somadas, mínima e máxima, são 37,93 L/s e 46,29 L/s respectivamente.

A Elevatória 2 recebe o restante das contribuições da bacia a ETE Safira, cujas vazões mínima e máxima são, respectivamente, 19,52 L/s e 23,82 L/s. Como essa elevatória encontra-se na outra margem do córrego que atravessa a área da ETE será implantada uma travessia sob o mesmo, cujo detalhamento está apresentado na planta de interligações da ETE Safira.

4.1.2 Quesitos a serem verificados e atendidos

Tensão Trativa mínima	Tt > 1,0 Pa
Vazão mínima de cálculo	1,5 L/s
■ Velocidade máxima na tubulação	5,0 m/s
Lâmina d'água máxima	75%
■ Distância máxima entre PV's	80 m
Tubo de queda a partir de degraus superiores a	≥ 0,50 m

4.1.3 Diâmetros e materiais

A determinação dos diâmetros das tubulações resulta do dimensionamento hidráulico e foi prevista a utilização de tubos DN 250 mm em PVC e ferro fundido, este último será aplicado na travessia sob o curso d'água.

4.1.4 Tensão trativa

Para todos os trechos das tubulações foram verificadas as tensões trativas médias, sendo o valor mínimo admitido igual a 1,0 Pa, valores esses impostos para garantir as condições de auto limpeza das tubulações.

As tensões trativas (Tt), foram calculadas através das seguintes expressões matemáticas:

$$T_t = \delta \times R_H \times I$$

$$R_{H} = \frac{D}{4} \left(1 - \frac{\text{sen}\theta}{\theta} \right)$$

$$\theta = 2\cos^{-1}\left(1 - 2\frac{y}{D}\right)$$

$$\frac{y}{D} = K \left\{ sen \left[\frac{\pi}{180} (53 + 100K) \right] \right\}^{\left(-\frac{1}{6} \right)}$$

$$K = tg \left[\frac{\pi}{180} \left(\frac{4961.5 \times n \times Q}{\frac{8}{D^3} \times 1^2} \right)^{0.493} \right]$$

Obs.: o fator $\overline{180}$ é utilizado para converter o argumento das funções trigonométricas de graus para radianos.

Onde:

 δ = peso específico do esgoto = 10^4 N/m³;

I = declividade do trecho (m/m);

D = diâmetro da tubulação;

y = altura da lâmina d'água;

Q = vazão no trecho;

n = coeficiente de *Manning* = 0,013.

4.1.5 Declividade

As declividades mínimas das tubulações foram definidas para atendimento simultâneo aos critérios tensão trativa maior ou igual a 1,0 Pa e lâmina d'água menor ou igual a 75%. A declividade máxima é aquela que proporciona

velocidade de escoamento igual a 5,0 m/s.

4.1.6 Velocidade de escoamento

A velocidade de escoamento do esgoto em tubulação de seção circular foi avaliada pela expressão:

$$V = \frac{8Q}{D^2(\theta - sen\theta)}$$

4.1.7 Lâmina d'água

As lâminas d'água foram calculadas admitindo o escoamento em regime uniforme e permanente, e seu valor máximo expresso como percentual do diâmetro da tubulação no presente caso, 75%.

4.1.8 Sistematização dos cálculos e resultados

4.1.8.1 Premissas do dimensionamento

De acordo com as vazões dos trechos, o traçado das tubulações e formulação matemática apresentada, elaborou-se os dimensionamentos dos dois trechos de rede, cujos resultados estão apresentados a seguir:

4.1.8.2 Elevatória 1 à nova Elevatória Final

■ Vazão mínima	37,93 L/s
■ Vazão máxima	46,29 L/s
Diâmetro	250 mm
Material	PVC
Extensão total	17,00 m
Declividade	1,00%
■ Tensão trativa	7,00 Pa
■ Lâmina d'água	68%
■ Velocidade	1,30 m/s
4.1.8.3 Elevatória 2 à nova Elevatória Final	
■ Vazão mínima	19,52 L/s
■ Vazão máxima	23,82 L/s
Diâmetro	250 mm
Material	ferro fundido e PVC
Extensão total	30,55 m

Rua Nilton Baldo, 744-A – Bairro Paquetá CEP 31.330-660 – Belo Horizonte / Minas Gerais. Endereço Eletrônico: ottawaeng@terra.com.br – Telefax (31) 2527-2800 – CNPJ: 04.472.311/0001-04

Ampliação e Reforma ETE Safira – Projeto Básico - Memorial Descritivo e de Cálculo

•	Declividade	0,50%
•	Tensão trativa	3,50 Pa
•	Lâmina d'água	55%
•	Velocidade	0,86 m/s

4.2 Elevatória Final

4.2.1 Justificativa Técnica

Devido às condições topográficas da área destinada à implantação da ETE, será necessário implantar uma elevatória de esgotos para fornecimento de carga hidráulica ao sistema de tratamento de esgotos. Com o intuito de simplificar as atividades operacionais e de manutenção desse sistema de recalque optou-se pela utilização de bombas do tipo helicoidais.

4.2.2 Informações para o dimensionamento

•	Vazão máxima	70,12 L/s
•	Vazão mínima sem infiltração	14,82 L/s
•	Extensão da linha de sucção	5,85 m
•	Extensão da linha de recalque	12,80 m
•	Cota do N.A. máximo no poço de sucção	197,000 m
•	Cota do N.A. mínimo no poço de sucção	196,000 m
•	Cota do eixo da bomba	199,280 m
•	Cota de chegada no tratamento preliminar	205,000 m
•	Altura geométrica de sucção	3,280 m
•	Altura geométrica de recalque	5,720 m
•	Altura geométrica total	9,000 m

4.2.3 Escolha dos Diâmetros

4.2.3.1 Diâmetro de sucção (Ds)

Para obtenção de baixas velocidades no barriete adotou-se, D_S = 250 mm que também é do diâmetro do bocal de sucção da bomba especificada.

4.2.3.2 Diâmetro da linha de recalque (DR)

Admitiu-se o diâmetro de 250 mm para a linha de recalque coincidente com o diâmetro do bocal de descarga da bomba especificada.

Ampliação e Reforma ETE Safira – Projeto Básico - Memorial Descritivo e de Cálculo

4.2.4 Cálculo da altura manométrica

4.2.4.1 Perda de carga contínua na tubulação de sucção

4.2.4.1 1 erda de carga continua na tubulação de sucção						
■ Extensão da linha de sucção	5,85 m					
■ Diâmetro da linha de sucção	250 mm					
■ Vazão (Q _{máx})	70,12 L/s					
■ Velocidade	1,43 m/s					
■ Perda de carga unitária (J)	0,0070 m/m					
■ Perda de carga (hfcs)	0,041 m					
4.2.4.2 Perda de carga contínua na tubulação de recalque						
Extensão da linha de recalque	12,80 m					
Diâmetro do recalque	250 mm					
■ Vazão (Q _{máx})	70,12 L/s					
■ Velocidade	1,43 m/s					
■ Perda de carga unitária (J)	0,0070 m/m					
■ Perda de carga (hfcr)	0,090 m					

4.2.4.3 Perdas de carga localizadas na sucção

Tabela 2. Perda de Carga Localizada na sucção

Singularidades	Qte	DN (mm)	Vazão (L/s)	V (m/s)	K	hf _{ir} (m)	
Curva 90°	5	250	70,12	1,43	0,40	0,208	
Total							

4.2.4.4 Perdas de carga localizadas no recalque

Tabela 3. Perdas de Carga Localizadas

Singularidades	Qte	DN (mm)	Vazão (L/s)	V (m/s)	K	hf _{ir} (m)
Válvula de retenção	1	250	70,12	1,43	2,75	0,261
Registro de gaveta	1	250	70,12	1,43	0,20	0,021
Curva 90°	5	250	70,12	1,43	0,40	0,208
Curva 45°	6	250	70,12	1,43	0,20	0,125
Tê passagem direta	1	250	70,12	1,43	0,60	0,063
Tê saída lateral	1	250	70,12	1,43	1,30	0,135
Saída de canalização	1	250	70,12	1,43	1,00	0,104
		Total				0,917

4.2.4.5 Perda de carga total

 $hf = hf_{cs} + hf_{ls} + hf_{cr} + hf_{lr}$

hf = 0.041 + 0.208 + 0.090 + 0.917 hf = 1.256 m

Rua Nilton Baldo, 744-A - Bairro Paquetá CEP 31.330-660 - Belo Horizonte / Minas Gerais. Endereço Eletrônico: ottawaeng@terra.com.br - Telefax (31) 2527-2800 - CNPJ: 04.472.311/0001-04

4.2.4.6 Altura manométrica

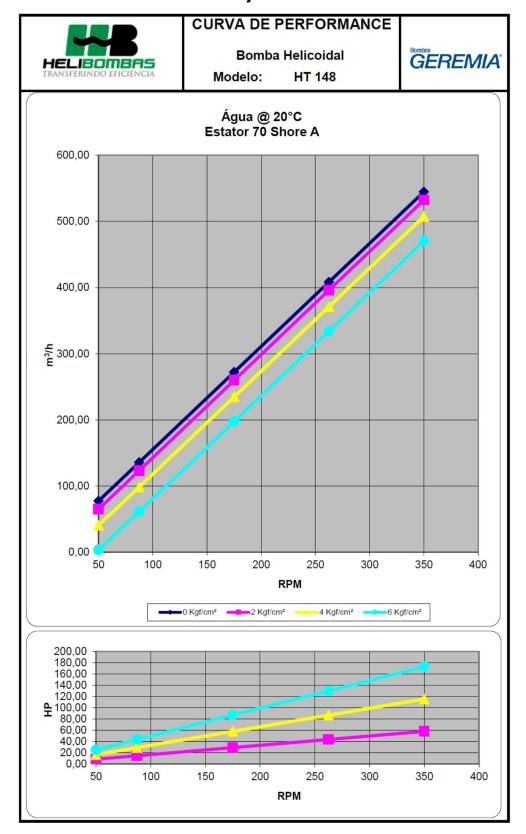
 $H_{man} = H_g + hf$

 $H_{man} = 9,000 + 1,256$

 $H_{man} = 10,256m$

4.2.5 Ponto de operação

O ponto de operação (Q = 252,432 m³/h H_{man} = 10,256 metros) aplicado à curva da bomba selecionada permite confirmar a sua escolha e todas condições operacionais do sistema de recalque.


4.2.6 Especificação dos conjuntos moto-bombas

•	Marca	Helibombas
•	Modelo	Geremia HT-148
•	Diâmetro da sucção	250 mm
•	Diâmetro da descarga	250 mm
•	Rotação da bomba	170 r.p.m.
•	Rendimento da bomba	36,9 %
•	Potência consumida	26 cv
•	Potência do motor	40 cv 4 polos
•	Vazão da bomba	252,432 m³/h
•	Altura manométrica total	10,256 m
	"Aspiração" (Altura manométrica de sucção)	3,529 m

4.2.7 Curva característica do conjunto moto bomba

Revised: July 2010 Helibobmas, Bombas Geremia®. All Rights Reserved

4.2.8 Poço de sucção

4.2.8.1 Volume do poço de sucção

Para garantir a intermitência de 10 minutos entre duas partidas consecutivas do conjunto moto-bomba, é necessário um poço de sucção com volume útil (V_u) definido da seguinte forma.

(T₁) tempo de enchimento do poço de sucção

$$T_1 = \frac{V_u}{Qe}$$

Qe, vazão afluente de esgoto.

(T₂) = tempo de esvaziamento do poço de sucção

$$\mathsf{T}_2 = \frac{\mathsf{V}_\mathsf{u}}{\mathsf{Q}_\mathsf{B} - \mathsf{Qe}}$$

Q_B - Vazão da bomba definida no item anterior.

(Tc) Tempo do Ciclo

 $T_C = T_1 + T_2$ deve ser no mínimo igual a 10 minutos.

$$\frac{V_u}{Qe} + \frac{V_u}{Q_B - Qe} \geq 10$$

Através do cálculo diferencial determina-se o menor volume do poço de sucção que satisfaz a relação acima, expressa pela fórmula:

V_u ≥ 2,5 x Q_B

 $Q_B = 72,12 \text{ L/s} \rightarrow 4,3272 \text{ m}^3/\text{min}$

 $V_u \ge 2.5 \times 4.3272$

V_u ≥ 10,82 m³

4.2.8.2 Caracterização do poço de sucção

•	Formato	Prismático
•	Comprimento	2,55 m
•	Largura	4,15 m
•	Submergência mínima	0,60 m
•	Altura útil	1,00m
•	Altura efetiva	1,10 m
•	Volume útil	10,58 m³
	Volume efetivo	11 64 m³

Rua Nilton Baldo, 744-A – Bairro Paquetá CEP 31.330-660 – Belo Horizonte / Minas Gerais. Endereço Eletrônico: ottawaeng@terra.com.br – Telefax (31) 2527-2800 – CNPJ: 04.472.311/0001-04

•	Vazão mínima sem infiltração	14,82 L/s
	Tempo de detenção hidráulico	13 09 minutos

4.2.9 Linha de recalque

A linha de recalque será locada a partir da elevatória de esgoto e seguirá dentro da área da ETE. Suas principais características hidráulicas e construtivas são:

•	Constituição	ferro fundido
•	Diâmetro	250 mm
•	Extensão	12,80 m
	Velocidade do fluxo	1,43 m/s

4.2.10 Transientes hidráulicos

Diante das principais características hidráulicas apresentadas por este sistema recalque, baixas altura manométrica e velocidade de fluxo, é desnecessário, neste caso, o estudo das pressões transientes pois é sabido de antemão que os transientes hidráulicos pouco afetarão o sistema de recalque, principalmente porque sua linha de recalque será constituída de tubos de ferro fundido resistentes aos esforços solicitantes decorrentes de pressões negativas no interior da linha de recalque.

4.2.11 Empuxos e blocos de ancoragem

O dimensionamento dos blocos de ancoragem é precedido pelos cálculos dos empuxos hidráulicos, realizados através da formulação matemática descrita na sequencia:

$$E_{H} = 2P \times \frac{\pi D_{e}^{2}}{4} \times sen(\theta/2)$$

Onde:

E_H = Empuxo hidráulico

P = Pressão interna na tubulação no ponto em estudo

θ= Deflexão do eixo da tubulação

D_e = Diâmetro externo da tubulação

De forma aproximada, para curvas no plano horizontal LASMAR (2003) determina que a utilização de blocos de ancoragem possa ser dispensada caso

a tensão transmitida ao solo, referente ao empuxo aplicado, distribuído no retângulo, definido por 50 cm de tubo e por seu diâmetro externo, seja inferior a tensão horizontal admissível do solo, admitida no máximo em 40 kN/m², caso essa grandeza não resulte de ensaios de laboratório de mecânica dos solos.

$$\sigma_{\text{H}} = \frac{E_{\text{H}}}{50 \text{cm} \times D_{\text{e}}} \leq \sigma_{\text{ADM-H}} = 40 \text{ kN/m}^2$$

$$E_{H} \leq (50 \text{cm} \times D_{e}) \times \sigma_{ADM-H}$$

Onde:

σ_H = Tensão horizontal aplicada ao solo

σ_{ADM-H} = Tensão horizontal máxima admitida no solo.

Em tubulações de diâmetro externo de 274 mm, o empuxo hidráulico máximo a partir do qual os blocos de ancoragem são necessários é:

$$E_{H} \le (0.50 \times 0.274) \times 40$$

$$E_{\scriptscriptstyle H} \leq 5,48\,kN$$

Através da formulação matemática apresentada elaborou-se uma planilha de cálculos dos empuxos hidráulicos aplicados nas deflexões da tubulação, e o respectivo dimensionamento dos blocos de ancoragem. Admitiu-se para a linha de recalque da elevatória da ETE Safira um tipo de bloco de ancoragem, aplicável às curvas de 90°.

Apresentam-se no anexo 2 a planilha de cálculo de empuxo hidráulico e de dimensionamento dos blocos de ancoragem, no qual, a favor da segurança, foi considerada a pressão máxima verificada na linha de recalque correspondente à pressão manométrica máxima acrescida de 50% cujo resultado é 15,0 mca, (metros de coluna d'água).

4.3 Adaptação do Decanto Digestor em Reator UASB

Para adaptação dos decantos digestores existentes será necessária a demolição das lajes de cobertura, além das canaletas de recolhimento interno e paredes de divisão interna, conforme detalhado no projeto estrutural, para construção das novas estruturas internas e nova laje de cobertura.

Salienta-se que para não paralisar completamente o funcionamento da ETE as obras nos dois decanto digestores não ocorrerão simultaneamente de

forma a garantir que ao menos um módulo da ETE permaneça em funcionamento.

4.3.1 Dados para o dimensionamento

•	N° de habitantes	24,893
•	Carga DBO "per capita"	54 g DBO/hab/dia
•	Carga DQO "per capita"	90 g DBO/hab/dia
•	Carga total de DBO	1344 kg DBO/dia
•	Carga total de DQO	2240 kg DQO/dia
•	Vazão média total	41,17 L/s (3557,09 m³/dia)
•	Vazão máxima horária total	70,12 L/s (6058,37 m³/dia)
•	Vazão média por módulo	20,59 L/s (1778,54 m³/dia)
•	Vazão máxima horária por módulo	35,06 L/s (3029,18 m³/dia)
•	Concentração de DBO	378 mg/L
•	Concentração de DQO	630 mg/L
•	Coeficiente de produção de sólidos (Y)	0,12 kg SST/kg DQOapl
•	Coef. prod sólidos, em termos de DQO (Yobs).	0,21 kg DQOLodo/kg DQOapl
•	Concentração do lodo de descarte	C ₁ = 3%
•	Densidade do lodo de descarte	$d_{3\%} = 1.020 \text{ kg/m}^3$
•	Concentração do lodo desidratado	C ₂ = 50%
•	Densidade do lodo desidratado	d _{50%} = 1.040 kg/m ³

4.3.2 Geometria de cada unidade

A ETE Safira conta com dois Decanto Digestores compostos, cada um, de 12 módulos tronco piramidal que serão aproveitados e apresentam as seguintes características geométricas.

4.3.2.1 Volume prismático de uma unidade

•	Comprimento total do reator	29,00 m
•	Largura total do reator	9,50 m
•	Altura útil	2,60 m
•	Volume	716,30 m³
1	3.2.2. Volume tronco niramidal	

4.3.2.2 Volume tronco piramidal

■ Lado da base maior	4,45 m
■ Lado da base menor	0,60 m
Altura do tronco piramidal	1,93 m
Área maior	19,80 m²
Área menor	0,36 m²
■ Volume total dos troncos piramidais	176,27 m³
4.3.2.3 Volume total de cada reator	
Altura útil total	4,53 m
Área superficial	275,50 m²
Volume total	892.57 m³

4.3.3 Verificação do tempo de detenção hidráulica (TDH)

$$TDH = \frac{V}{Q};$$

$$TDH = \frac{892,57}{20.59x3.6}$$

TDH = 12,04 horas (superior a 8 horas)

4.3.4 Verificação das cargas aplicadas

4.3.4.1 Carga orgânica volumétrica

$$COV = \frac{L_0}{V}$$
 $COV = \frac{2240}{2x892,57}$
 $COV = 1,25 \text{ KgDQO/m}^3/\text{dia}$

4.3.4.2 Carga hidráulica volumétrica

CHV =
$$\frac{Q}{V}$$

CHV = $\frac{3557,09}{2x892,57}$
CHV = 1,99 m³/m³/dia

4.3.5 Verificação das velocidades superficiais

$$v=\frac{Q}{A}$$

4.3.5.1 Para $Q_{méd} = 74,11 \text{ m}^3/\text{h}$

 $v_{méd} = 0.29 \text{ m/h}$

4.3.5.2 Para $Q_{máx} = 126,22 \text{ m}^3/\text{h}$

 $v_{máx} = 0,49 \text{ m/h}$

Valores recomendáveis segundo Lettinga & Hulshoff:

v_{méd} < 0,50 m/h (preferencialmente), ou no máximo < 0,70 m/h

v_{máx} < 0,90 m/h (preferencialmente), ou no máximo < 1,11 m/h

4.3.6 Dimensionamento do compartimento de decantação

4.3.6.1 Volume o decantador (V_d)

 $V_d = k \times L \times (c \times e + (c + d) \times f / 2);$

Geometria dos decantadores para cada unidade:

- N° de unidadesk = 6
- ComprimentoL = 9,50 m
- Largura da seção retangular.....c = 4,66 m
- Abertura das passagensd = 0,75 m
- Altura da seção retangulare = 0,45 m
- Altura da seção trapezoidalf = 1,45 m

 Cálculo do volume (V_d)

 $V_d = 343,10 \text{ m}^3$

4.3.6.2 Área do decantador (Ad)

 $A_d = k x c x L$

 $A_d = 265,62 \text{ m}^2$

4.3.6.3 Verificação das taxas de aplicação superficial (TAS)

$$TAS = \frac{Q}{A_d}$$

Para $Q_{méd} = 74,11 \text{ m}^3/\text{h}$

TAS = 0.28 m/h

Para $Q_{máx} = 126,22 \text{ m}^3/\text{h}$

TAS = 0.48 m/h

As taxas de aplicação superficiais estão de acordo com os valores recomendados pela literatura técnica que são:

Rua Nilton Baldo, 744-A – Bairro Paquetá CEP 31.330-660 – Belo Horizonte / Minas Gerais. Endereço Eletrônico: ottawaeng@terra.com.br – Telefax (31) 2527-2800 – CNPJ: 04.472.311/0001-04

Para $Q_{méd}$ TAS ≤ 0.6 a 0.8 (m/h)

Para $Q_{máx}$ TAS < 1,2 m/h

4.3.6.4 Verificação dos tempos de detenção hidráulica (TDH)

$$TDH = \frac{V_d}{Q}$$

Para $Q_{méd} = 74,11 \text{ m}^3/\text{h}$

TDH = 4,63 h

Para $Q_{máx} = 126,22 \text{ m}^3/\text{h}$

TDH = 2.72 h

Comentários sobre os tempos de detenção hidráulicos

Para Q_{méd} TDH > 1,5 h

Para Q_{máx} TDH > 1.0 h

4.3.7 Dimensionamento das passagens para o decantador

4.3.7.1 Área total das passagens (AP)

 $A_P = k \times L \times d$

 $A_P = 42,75 \text{ m}^2$

4.3.7.2 Velocidades nas passagens

 $V = Q/A_P$

Para $Q_{méd} = 74,11 \text{ m}^3/\text{h}$

 $V_{méd} = 1,73 \text{ m/h}$

Para $Q_{máx} = 126,22 \text{ m}^3/\text{h}$

 $V_{máx} = 2.95 \, m/h$

Recomenda-se que:

 $V_{méd} < 2.0 \ a \ 2.3$

 $V_{máx} < 4.0 a 4.2$

4.3.8 Escolha do diâmetro dos tubos de entrada

- Número de tubos de entrada12
- Vazão máxima por tubo de entrada......2,92 L/s (0,0029 m³/s)
- Vazão média por tubo de entrada......1,72 L/s (0,0017 m³/s)

$$D = \sqrt{\frac{4Q}{\pi V}}$$

v = 0.2 m/s (recomendada)

$$D = \sqrt{\frac{4 \times 0,00029}{\pi \times 0,2}} \times 1.000$$

D = 136,38 mm adotou-se o diâmetro comercial mais próximo, PEAD DE 140 mm (D = 134,4 mm), com v = 0.21 m/s

4.3.9 Estimativa da eficiência na remoção das demandas de oxigênio

4.3.9.1 DQO (Demanda química de oxigênio)

$$E_{DQO} = 100 (1 - 0.68 \times TDH^{-0.35})$$

$$E_{DOO} = 72\%$$

4.3.9.2 DBO (Demanda bioquímica de oxigênio)

$$E_{DBO} = 100 (1 - 0.70 \times TDH^{-0.50})$$

$$E_{DBO} = 80\%$$

4.3.10 Estimativa das concentrações de DQO e DBO no efluente do UASB

$$S = S_0 \times \left(1 - \frac{E}{100}\right)$$

 $S_{DQO} = 208 \text{ mg/L}$

 $S_{DBO} = 95 \text{ mg/L}$

4.3.11 Avaliação da produção total de lodo

$$P_{Lodo} = Y \times DQO_{apl}$$

$$P_{Lodo} = 0.12 \times 2240$$

Volume de lodo descartado com concentração de 3% de sólidos

$$V_{\text{LODO}} = \frac{P_{\text{LODO}}}{d_{3\%} \ xC_{1}}$$

 $V_{Lodo} = 8.78 \text{ m}^3/\text{dia}$

4.3.12 Avaliação da produção total de metano

$$DQO_{CH_4} = Q_{méd} [S_0 (1 - Y_{obs}) - S]$$

ale New Novigon Cart

$$k(t) = \frac{Pk}{R(273 + t)}$$

$$k(t) = 2,63 \text{ Kg DQO/m}^3$$

$$Q_{CH_4} = \frac{DQO_{CH_4}}{k(t)}$$

$$Q_{CH_4} = 392 \, \text{m}^3/\text{dia}$$

4.3.13 Avaliação da produção total de biogás

Admite-se que o metano represente 75% do biogás logo se tem:

$$Q_{\text{biog\'as}} = \frac{Q_{\text{CH}_4}}{0.75}$$

$$Q_{\text{biogás}} = 523 \text{ m}^3/\text{dia}$$

Por reator Q_{biogás} = 262 m³/dia

4.3.14 Verificação da taxa de liberação de biogás

4.3.14.1 Área disponível para coleta de biogás (Ag)

$$A_g = k \times L \times b$$

$$A_g = 10,83 \text{ m}^2$$

$$Q_{biogás} = 10,90 \text{ m}^3/\text{hora}$$

$$TLB = \frac{Q_{\text{biogás}}}{A_{\text{q}}}$$

$$TLB = 1.01 \text{ m}^3/\text{m}^2/\text{h}$$

4.3.14.2 Tubulação coletora de biogás:

Para esta tubulação foi admitido um diâmetro que não permita velocidade do fluxo superior a V_{biogás} = 3,60 m/s, ou seja:

$$D \geq \sqrt{\frac{4 \ x \ Q_{biog\acute{a}s}}{\pi \ x \ V_{biog\acute{a}s} x 3600}} \times 1000$$

$$D \ge 32,7 \text{ m}$$

Adotado D =
$$50 \text{ mm}$$

4.3.15 Disposição final do biogás

Previu-se a implantação de um queimador de gás aplicável à situação presente, onde se queira dispor na atmosfera, de forma ambientalmente correta, o biogás resultante da decomposição anaeróbia de massa orgânica e que apresente vazão inconstante e baixa pressão.

O equipamento especificado será composto por duas partes principais. A primeira é o ignitor que tem a função de gerar a alta tensão que será utilizada pelos eletrodos (velas) para gerar a centelha. Seu acondicionamento será em caixa plástica apropriada para instalações externas, ou seja, ao tempo. A segunda parte do equipamento é o queimador que promoverá a mistura do biogás com o ar atmosférico e serve de suporte para os condutores de alta tensão e dos eletrodos. A estrutura do queimador será constituída em aço inox, resistente à corrosão, apesar da grande agressividade do ambiente de sua instalação. Os isoladores elétricos serão de material de alta durabilidade e não higroscópico. As tubulações que aduzirão o biogás, a partir do reator UASB, até o próprio queimador serão de polipropileno e as válvulas de bronze.

4.4 Filtro Anaeróbio de Fluxo Ascendente Existente

Conforme verificado no Estudo de Concepção com melhoria da eficiência da ETE com a transformação dos decantos digestores em reatores UASB não será necessário ampliar os filtros anaeróbios existentes. Dessa forma o mesmo receberá apenas melhorias para proteção da estrutura existente contra ataque nocivo de gases, com a aplicação de cimento impermeabilizante nas paredes internas, na faixa compreendida entre 50 cm abaixo do N.A., até a laje de cobertura e toda a face interna da laje de cobertura. Também foi prevista a instalação de 90 m de guarda corpo em todo perímetro da laje de cobertura de cada filtro, totalizando 180 m de guarda corpo.

4.4.1 Dados para verificação

•	Vazão média	Q méd	= 41	,17	L/s	(148,21	m³/h)

- Vazão máxima diária Q_{máx-d} = 46,75 L/s (168,30 m³/h)
- DBO média afluente95 mg/L

337,92 kg DBO5/dia
75%
2
15,60 m
29,00 m
904,80 m²
0,80 m
0,72 m
0,20 m
1,72 m
1556,26 m³
nais
endado (5 a 10 horas)
mendado (4 a 8 horas)
mendado (3 a 6 horas)
mendado (3 a 6 horas)
mendado (3 a 6 horas)

■ TAS para Qmáx-d = 4,46..... recomendado (< 8 a 12 m³/m²/dia)

■ TAS para Qmáx-h = 6,70 recomendado (< 10 a 15 m³/m²/dia)

4.4.2.3 Carga orgânica no meio suporte (COMS)

$$\begin{aligned} &\text{COMS} = \frac{L_{\text{F}}}{A_{\text{total}} \times h_{1}} \\ &\text{COMS} = \frac{337,92}{904,80 \times 0,80} \end{aligned}$$

 $COMS = 0.47 \text{ kg } DBO/m^3/dia$ (recomendado de 0,25 a 0,75 kg DBO/m³/dia)

4.4.2.4 Carga orgânica (CO)

$$CO = \frac{L_F}{A_{total} \times h_u}$$

$$CO = \frac{337,92}{904,80 \times 1,72}$$

 $CO = 0.22 \text{ kg DBO/m}^3/\text{dia}$

(recomendado de 0,15 a 0,50 kg DBO/m³/dia)

4.4.3 Eficiências do tratamento

4.4.3.1 Eficiência do filtro anaeróbio (E_F)

$$E_F = 100(1-0.87 \times TDH^{-0.54})$$

 $E_E = 100(1-0.87 \times 10.5^{-0.54})$

$$E_F = 76 \%$$

4.4.3.2 Eficiência do sistema (UASB + filtro)

$$E_{s} = (E_{R} + E_{F} - E_{R} \times E_{F}/100)$$

$$E_s = (75 + 76 - 75 \times 76/100)$$

$$E_S = 94 \%$$

4.4.4 Estimativa de concentração de DBO no efluente final

$$S = (100 - E_s) \times S_0 / 100)$$

$$S = (100 - 94) \times 378/100$$

$$S = 23,10 \text{ mg/L}$$

4.5 Leitos de Secagem

Os leitos de secagem existentes serão aproveitados. Apresenta-se a seguir a verificação dos mesmos.

4.5.1 Verificação da área necessária

- Massa de lodo a ser descartada2688,00 kg SST
- Volume de lodo a 3% de concentração87,84 m³

- Área de secagem necessária179,20 m²

Rua Nilton Baldo, 744-A – Bairro Paquetá CEP 31.330-660 – Belo Horizonte / Minas Gerais. Endereço Eletrônico: ottawaeng@terra.com.br – Telefax (31) 2527-2800 – CNPJ: 04.472.311/0001-04

4.5.2 Caracterização das células de secagem

Número de unidades	2 (funcionamento alternado)				
■ Formato	retangular				
Comprimento de cada célula	20,30 m				
Largura de cada célula	8,70 m				
Área permanente de secagem	176,61 m²				
Altura livre de cada célula	0,50 m				
4.5.3 Verificação da lâmina aplicada (e)					

4.5.3 Verificação da lâmina aplicada (e)

- Volume de lodo descartado na dezena......87,84 m³
- Área permanente de secagem......176,61 m²
- Lâmina aplicada......0,50 m

Para compatibilizar o período de descarte de lodo (10 dias) com o período estimado necessário para desidratação do lodo (15 dias) as células de secagem funcionarão alternadamente.

4.5.4 Volume teórico de lodo desidratado (VLD)

$$VLD = \frac{P_{LODO}}{d_{50\%} \text{ xC}_2}$$

$$VLD = \frac{268,80}{1.040 \text{ x 0,50}}$$

$$VLD = 0,52 \text{ m}^3/\text{dia}$$

4.5.5 Vazão de drenados

•	Vazão lodo fresco	.8,78 m³/dia
•	Vazão lodo desidratado	.0,52 m³/dia
	Vazão de drenados	.8,27 m³/dia

5 PLANO DE PARTIDA E OPERAÇÃO DA ETE

Para implantação das obras de melhorias da ETE Safira o funcionamento de um conjunto de decanto digestor e filtro será interrompido, dessa forma todo esgoto será direcionado para o outro conjunto que permanecerá em funcionamento e assim garantindo que os esgotos recebam tratamento, embora de maneira, temporariamente, precária.

Após a conclusão das obras o reator UASB e filtro anaeróbio serão submetidos a testes de estanqueidade no qual poderá ser usada água do próprio curso receptor. Confirmado o sucesso dos testes, essas unidades deverão permanecer cheias de água para em seguida receberem os esgotos que preencherão os reatores e os filtros anaeróbios e expulsarão a água anteriormente retida.

No início do regime operacional da ETE os esgotos serão submetidos apenas a gradeamento, desarenação e decantação primária que será exercida pelo reator UASB. Com o decorrer do tempo a função biodegradação anaeróbia da matéria orgânica presente nos esgotos, atribuída aos reatores e filtro anaeróbio respectivamente será paulatinamente exercida, até a sua eficiência prevista em projeto. De forma a reduzir o tempo para o crescimento da biomassa no interior do Reator poderá ser utilizado lodo proveniente do outro módulo que encontra-se em funcionamento.

31

AMPLIAÇÃO E REFORMA ETE SAFIRA — PROJETO BÁSICO - MEMORIAL DESCRITIVO E DE CÁLCULO

6 REFERÊNCIAS BIBLIOGRÁFICAS

- 1. BAPTISTA, Márcio; COELHO, Márcia. Fundamentos de Engenharia Hidráulica. Editora UFMG – Escola de Engenharia da UFMG, Belo Horizonte, 2002;
- 2. BASTOS. Francisco. Problemas de Mecânica dos Fluidos. Rio de Janeiro, 1983;
- CHERNICHARO, Carlos (coordenador). Pós-Tratamento de Efluentes 3. de Reatores Anaeróbios. Belo Horizonte, 2001;
- CRESPO, Patrício. Elevatórias nos Sistemas de Esgotos. Editora UFMG, Belo Horizonte, 2001;
- CRESPO, Patrício. **Sistema de Esgotos.** Editora UFMG Departamento de Engenharia Sanitária e Ambiental da Escola de Engenharia da UFMG, Belo Horizonte, 1997;
- 6. CRESPO. Patrício. Tratamento de Esgotos. Departamento Engenharia Sanitária e Ambiental da UFMG;
- 7. VON SPERLING, Marcos. Introdução à Qualidade Das Águas e ao Tratamento De Esgotos; Departamento de Engenharia Sanitária e Ambiental da Escola de Engenharia da UFMG, Belo Horizonte, 2005;
- 8. VON SPERLING, Marcos. Princípios Básicos do Tratamento de Esgotos; Departamento de Engenharia Sanitária e Ambiental da Escola de Engenharia da UFMG, Belo Horizonte, 2005.